Under immunogenic conditions, both the site of initial Ag exposure and consequent T cell priming in specific draining lymph nodes (LNs) imprint the ensuing immune response with lasting tissue-selective tropism. With respect to immune tolerance, whether the site of tolerance induction leads to compartmentalized or, alternatively, pervasive tolerance has not been formally investigated. Using a murine model of inhalation tolerance, we investigated whether the induction of respiratory mucosal tolerance precludes the development of de novo Th2 sensitization upon subsequent exposure to the same Ag at distant mucosal (gut) and nonmucosal (cutaneous) sites. By tracking the proliferation of CFSE-labeled OVA-TCR transgenic CD4(+) T cells upon OVA inhalation in vivo, we defined the site of tolerance induction to be restricted to the thoracic LNs. Expectedly, inhalation tolerance prevented de novo Th2 sensitization upon subsequent exposure to the same Ag at the same site. Importantly, although gut- and skin-draining LNs were not used during tolerance induction, de novo Ag-specific proliferation and Th2 differentiation in these LNs, as well as memory/effector Th2 responses in the gut (allergic diarrhea) and skin (late-phase cutaneous responses) were inhibited upon immunogenic challenge to the same Ag. Interestingly, this pervasive tolerogenic phenotype was not associated with the presence of suppressive activity throughout the lymphatics; indeed, potent suppressive activity was detected solely in the spleen. These data indicate that while inhalation tolerance is selectively induced in local thoracic LNs, its tolerogenic activity resides systemically and leads to pervasive immune tolerance in distant mucosal and nonmucosal sites.