Non-small-cell lung cancer (NSCLC) represents the most frequent and therapy-refractive sub-class of lung cancer. Improving apoptosis induction in NSCLC represents a logical way forward in treating this tumor. Cisplatin, a commonly used therapeutic agent in NSCLC, induces activation of N-terminal-c-Jun kinase (JNK) that, in turn, mediates induction of apoptosis. In analysing surgical tissue samples of NSCLC, we found that expression of MKP1/CL100, a negative regulator of JNK, showed a strong nuclear staining for tumor cells, whereas, in normal bronchial epithelia, MKP1 was localized in the cytoplasm as well as in nuclei. In the NSCLC-derived cell lines H-460 and H-23, we found that MKP1 was constitutively expressed. Expressing a small-interfering RNA (siRNA) vector for MKP1 in H-460 cells resulted in a more efficient activation by cisplatin of JNK and p38 than in the parental cells, and this correlated with a 10-fold increase in sensitivity to cisplatin. A similar response was also observed in H-460 and H-23 cells when treated with the MKP1 expression inhibitor RO-31-8220. Moreover, expression of a siRNA-MKP2, an MKP1-related phosphatase, had no effect on H-460 cell viability response to cisplatin. Tumors induced by H-460 cells expressing MKP1 siRNA grew slower in nu(-)/nu(-) mice and showed more susceptibility to cisplatin than parental cells, and resulted in an impaired growth of the tumor in mice. On the other hand, overexpression of MKP1 in the H-1299 NSCLC-derived cell line resulted in further resistance to cisplatin. Overall, the results showed that inhibition of MKP1 expression contributes to a slow down in cell growth in mice and an increase of cisplatin-induced cell death in NSCLC. As such, MKP1 can be an attractive target in sensitizing cells to cisplatin to increase the effectiveness of the drug in treating NSCLC.