Adenosine deaminases that act on RNA (ADARs) site-selectively modify adenosines to inosines within RNA transcripts, thereby recoding genomic information. How ADARs select specific adenosine moieties for deamination is poorly understood. Here, we report NMR structures of the two double-stranded RNA binding motifs (dsRBMs) of rat ADAR2 and an NMR chemical shift perturbation study of the interaction of the two dsRBMs with a 71 nucleotide RNA encoding the R/G site of the GluR-B. We have identified the protein and the RNA surfaces involved in complex formation, allowing us to present an NMR-based model of the complex. We have found that dsRBM1 recognizes a conserved pentaloop, whereas dsRBM2 recognizes two bulged bases adjacent to the editing site, demonstrating RNA structure-dependent recognition by the ADAR2 dsRBMs. In vitro mutagenesis studies with both the protein and the RNA further support our structural findings.