We examined the effect of carbachol, an acetylcholine analogue, on hydraulic conductivity (Lp) response to 10 microU/ml arginine vasopressin (AVP) in rabbit cortical collecting duct (CCD). In CCDs in which water flow had been established with AVP, subsequent addition of carbachol caused Lp (X10(-7) cm.atm-1.s-1) to fall from 251 +/- 32 to 146 +/- 19. Carbachol washout resulted in recovery of Lp to 217 +/- 38. In CCDs in which water flow had been established using 10(-4) M 8-chlorophenylthioadenosine 3',5'-cyclic monophosphate (8-CPT-cAMP), addition of carbachol had no effect. These posttreatment studies suggest that carbachol's effects on modulating established water flow occur at a "pre-cAMP" step. With carbachol added first, AVP-induced Lp was reduced from 233 +/- 24 (controls) to 105 +/- 19 (carbachol-pretreated). Pretreatment with 10(-6) M atropine, a muscarinic receptor antagonist, totally reversed the inhibitory effect of carbachol, consistent with a receptor-mediated effect of carbachol. Carbachol pretreatment also inhibited 8-CPT-cAMP-induced Lp, indicating that carbachol's effects also occur at a "post-cAMP" step. Pretreatment with 10(-7) M staurosporine, a protein kinase C (PKC) inhibitor, reversed inhibitory effect of carbachol on AVP-induced Lp (193 +/- 26), suggesting that carbachol's effects are mediated by PKC. Intracellular calcium concentration [( Ca2+]i) was measured in fura-2-loaded CCDs. Carbachol also increased [Ca2+]i from 229 +/- 120 to 389 +/- 160 nM.(ABSTRACT TRUNCATED AT 250 WORDS)