The kinetics of appearance of autologous neutralizing antibodies were studied in cynomolgus macaques infected with simian immunodeficiency virus (SIVsm) by the intravenous (IV) route (six monkeys) or the intrarectal (IR) route (ten monkeys). The SIVsm inoculum virus and reisolates obtained at 2 weeks, 3 or 4 months and later than 1 year were tested in a GHOST(3) cell line-based plaque-reduction assay with autologous sera collected at the same sampling times. All monkeys developed a neutralizing-antibody response to the inoculum virus, those infected by the IV route earlier than monkeys infected by the IR route. Animals were divided into progressor (P), slow-progressor (SP) and long-term non-progressor (LTNP) monkeys, based on progression rate. In P monkeys, neutralization escape could be demonstrated by 3 months post-infection. Neutralization-resistant variants also emerged in SP and LTNP monkeys, but were much delayed compared with P monkeys. Evolution of neutralization resistance was also demonstrated by a positive-control serum in the heterologous reaction. Pooled sera from four LTNP monkeys showed a broad neutralizing capacity, including neutralization of escape variants. These results from a large group of infected monkeys showed that SIV evolves to neutralization resistance in the infected host and that the kinetics of this evolution are related to the route of transmission and the progression rate of SIV disease. The results suggest an important role for neutralizing antibodies in controlling viraemia. Although this control is transient in the infected host, neutralization resistance is relative and variant viruses may be neutralized by a broadly cross-neutralizing serum pool.