The Aurora kinases are involved in the regulation of cell cycle progression, and alterations in their expression have been shown to associate with cell malignant transformation. In the present study, we demonstrated that human thyrocytes express all 3 Aurora kinases (A, B and C) at both protein and mRNA level and this expression is cell cycle-regulated. An increase in the protein level of the 3 kinases was found, with respect to normal human thyrocytes (HTU5), in the human cell lines derived from follicular (FTC-133), papillary (B-CPAP) and anaplastic (8305C) thyroid carcinomas, but not in cells derived from a follicular adenoma (HTU42). These observations were mirrored in RT-PCR experiments for Aurora-A and B. In contrast, Aurora-C mRNA levels were not significantly different among the different cell types analyzed, suggesting that posttranscriptional mechanism(s) modulate its expression. The expression at the protein level of all 3 Aurora kinases was significantly higher in 3 thyroid papillary carcinomas with respect to normal matched tissues obtained from the same patients. Similar modifications, at the mRNA level, could be observed in 7 papillary carcinoma tissues for Aurora-A and B, but not for Aurora-C. In conclusion, we demonstrated that normal human thyrocytes express all 3 members of the Aurora kinase family, and their expression is amplified in malignant thyroid cell lines and tissues. These results suggest that the Aurora kinases may play a relevant role in malignant thyroid cancers, and may represent a putative therapeutic target for thyroid neoplasms.
2006 Wiley-Liss, Inc.