This is the first report on results proving that fluorescence of exogenous dyes inside the human brain can be excited and detected non-invasively at the surface of the adult head. Boli of indocyanine green (ICG) were intravenously applied to healthy volunteers, and the passage of the contrast agent in the brain was monitored by detecting the corresponding fluorescence signal following pulsed laser excitation at 780 nm. Our hypothesis that the observed fluorescence signal contains a considerable cortical fraction was corroborated by performing measurements with picosecond temporal resolution and analyzing distributions of times of arrival of photons, hence taking advantage of the well-known depth selectivity of that method. Our experimental findings are explained by Monte Carlo simulations modeling the head as a layered medium and taking into account realistic bolus kinetics within the extra- and intracerebral compartment. Although a particular non-specific dye (ICG) was used, the results clearly demonstrate that fluorescence-mediated imaging of the adult human brain is generally feasible. In particular, we will discuss how these results serve as proof of concept for non-invasive fluorescence brain imaging and may thus open the door towards optical molecular imaging of the human brain.