Background: HIV-1 is characterized by its rapid genetic evolution and high diversity as a consequence of its error-prone reverse transcriptase and genetic recombination. This latter mechanism is responsible for the creation of circulating recombinant forms (CRFs) found in nature. Previous studies from our lab group have shown that the epidemic in Argentina is characterized by one highly prevalent circulating recombinant form, CRF12_BF, and many related BF recombinant forms. Since transcriptional transactivation of the HIV-1 long terminal repeat (LTR) promoter element requires the essential viral Tat protein, since these genetic structures underwent recombination in variants widely spread in South America, the aim of this work was to study transcriptional activity associated with the recombinant LTR and Tat elements.
Results: Differential transcriptional activity was measured for the BF recombinant LTR/Tat complex that is present in widely spread viral variants was demonstrated. This analysis demonstrated a higher activity for the BF complex when compared to its B subtype counterpart.
Conclusion: This study indicates structural and functional consequences of recombination events within the LTR promoter and Tat transactivator protein of a naturally occurring HIV-1 recombinant form.