We use molecular dynamics to simulate experiments where a symmetric binary fluid mixture (AB), confined between walls that preferentially attract one component (A), is quenched from the one-phase region into the miscibility gap. Surface enrichment occurs during the early stages, yielding a B-rich mixture in the film center with well-defined A-rich droplets. The droplet size grows with time as l(t) proportional t(2/3) after a transient regime. The present atomistic model is also compared to mesoscopic coarse-grained models for this problem.