Electron transport in self-assembled polymer molecular junctions

Phys Rev Lett. 2006 Jan 20;96(2):027801. doi: 10.1103/PhysRevLett.96.027801. Epub 2006 Jan 18.

Abstract

A molecular junction of a poly(p-phenyleneethynylene)s derivative with thioacetate end groups (TA-PPE) was fabricated by self-assembling. Nanogap electrodes made by electroplating technique was used to couple thiol end groups of TA-PPE molecules. Room temperature current-voltage characteristics of the molecular junction exhibited highly periodic, repeatable, and identical stepwise features. First-principles calculations suggest that one possibility for the equidistant step is due to the opening of different conducting channels that corresponds to the unoccupied molecular orbitals of the polymer in the junction. It is interesting to see that an 18 nm long polymer is of quantized electronic structures and behaves like a quantum transport device.