Previous studies suggested that geminin plays a vital role in both origin assembly and DNA re-replication during S-phase; however, no data to support a role for geminin in G2/M cells have been described. Here it is shown that in G2/M-phase, geminin participates in the promotion of proper cytokinesis. This claim can be supported through a series of observations. First, geminin in G2/M is loaded onto chromatin after it is tyrosine phosphorylated. It is unlike S-phase geminin that resides in the nuclear soluble fraction, where it is exclusively S/T phosphorylated. Secondly, on chromatin, geminin gets S/T phosphorylated in late G1; this modification causes the release of geminin from the chromatin. Cyclins bind and phosphorylate geminin in a sequential, cell cycle-dependent manner. These modifications correlated well with geminin departure from the chromatin. This suggests that cyclin functions to either release geminin from chromatin or at least keep it at bay until late S-phase. Thirdly, depletion of geminin from a diploid mammary epithelial cell line (HME) causes cells to arrest in late G2/M-phase. Massive serine-10 phosphorylated histone H3 staining and survivin localization to mid-body were observed; this suggests that they could be arrested in either mitosis or at cytokinesis. Finally, while in the absence of geminin, cyclin B1, chk1 and cdc7 are all over expressed. This paper will demonstrate that only cdc7 is important in maintaining the cytokinesis arrest in the absence of geminin. Only double depletion of geminin and cdc7 induce apoptosis. Our results taken together show, for the first time, that phosphorylation-induction activates oscillation of geminin between both nuclear soluble and chromatin compartments. Chromatin-bound geminin species functions to initiate or maintain proper cytokineses. In the absence of geminin, cells arrest in cytokinesis; this defines a novel checkpoint, monitored by cdc7, rather than cyclin B1 or chk1.