The pathophysiological characteristics of bronchial asthma consist of chronic inflammation of airways, airway hyperresponsiveness, and bronchoconstriction. Studies have shown that T helper type 2 (Th2) cytokines produced by both T cells and mast cells in the airway contribute substantially to the initiation of inflammation in both experimental and human bronchial asthma. GATA-3 is a transcription factor essential to the production of Th2 cytokines by T lymphocytes. To clarify the role of GATA-3-expressing T cells in the pathophysiology of bronchial asthma, we utilized transgenic (Tg) mice carrying the GATA-3 gene and the ovalbumin (OVA)-specific T cell receptor gene (GATA-3-Tg/OVA-Tg). Mice were intranasally administrated OVA without systemic immunization. Airway responses were analyzed with noninvasive and invasive whole body plethysmographs. GATA-3-Tg/OVA-Tg mice exhibited significantly higher IL-13 and IL-4 protein expression in the airway. Although there were no differences in the types of infiltrating cells between GATA-3-Tg/OVA-Tg and GATA-3-non-Tg/OVA-Tg mice and no significant increase in IgE level in either group compared with nontreated mice, the response after ACh inhalation was significantly elevated in GATA-3-Tg/OVA-Tg on the seventh day of intranasal treatment with OVA. This hyperresponsiveness was inhibited by 5-lipoxygenase inhibitor and IL-13 neutralization, suggesting that airway responses were induced through IL-13 and leukotriene pathway. In conclusion, airway hyperresponsiveness, a characteristic of bronchial asthma, is regulated at the level of GATA-3 transcription by T lymphocytes in vivo.