Candida albicans is an important human pathogen that causes systemic infections, predominantly among populations with weakened immune systems. The morphological transition from the yeast to the hyphal state is one of the key factors in C. albicans pathogenesis. Owing to their location at the host-pathogen interface, the cell wall and associated proteins are of interest, especially with respect to the yeast to hyphal transition. This study entailed the proteomic analysis of differentially regulated proteins involved in this transition. The protein profiles of C. albicans DTT/SDS-extractible proteins and the cyanogen bromide (CNBr)/trypsin-extractable proteins of a cell wall-enriched fraction from yeast and hyphae were compared. In total, 107 spots were identified from the DTT/SDS-extractible cell wall-enriched fraction, corresponding to 82 unique proteins. Of these DTT/SDS-extractible proteins, 14 proteins were upregulated and 10 were downregulated in response to hyphal induction. Approximately 6-9% of total cell wall-protein-enriched fraction was found to be resistant to DTT/SDS extraction. Analysis of the DTT/SDS-resistant fraction using a CNBr/trypsin extraction resulted in the identification of 29 proteins. Of these, 17 were identified only in the hyphae, four were identified only in the yeast, and eight were identified in both the yeast and hyphae.