As part of the Southern Appalachian Mountains Initiative, a comprehensive air quality modeling system was developed to evaluate potential emission control strategies to reduce atmospheric pollutant levels at the Class I areas located in the Southern Appalachian Mountains. Six multiday episodes between 1991 and 1995 were simulated, and the skill of the modeling system was evaluated. Two papers comprise various parts of this study. Part I details the ozone model performance and the methodology that was used to scale discrete episodic pollutant levels to seasonal and annual averages. This paper (part II) addresses issues involved with modeling particulate matter (PM) and its relationship to visibility. For most of the episodes, the fractional error was approximately 50% or less for the major constituents of the fine PM (i.e., sulfate [SO4] and organics) in the region. The mean normalized errors and fractional errors are generally larger for the NO3 and soil components, but these components are relatively small. Variations in modeling bias with pollutant levels were also examined. The model showed a systematic overestimation for low levels and an underestimation for high levels for most PM species. For ammonium, the model showed better performance at lower SO4 concentrations when the measured SO4 was assumed to be completely neutralized (ammonium sulfate) and better performance at higher SO4 concentrations when the partially neutralized (ammonium bisulfate) assumption was made. The contributions of various components of PM to reductions in visibility were also calculated; SO4 was found to be the major contributor.