Ca2+-signaling in airway smooth muscle cells is altered in T-bet knock-out mice

Respir Res. 2006 Feb 23;7(1):33. doi: 10.1186/1465-9921-7-33.

Abstract

Background: Airway smooth muscle cells (ASMC) play a key role in bronchial hyperresponsiveness (BHR). A major component of the signaling cascade leading to ASMC contraction is calcium. So far, agonist-induced Ca2+-signaling in asthma has been studied by comparing innate properties of inbred rat or mouse strains, or by using selected mediators known to be involved in asthma. T-bet knock-out (KO) mice show key features of allergic asthma such as a shift towards TH2-lymphocytes and display a broad spectrum of asthma-like histological and functional characteristics. In this study, we aimed at investigating whether Ca2+-homeostasis of ASMC is altered in T-bet KO-mice as an experimental model of asthma.

Methods: Lung slices of 100 to 200 microm thickness were obtained from T-bet KO- and wild-type mice. Airway contraction in response to acetylcholine (ACH) was measured by video-microscopy and Ca2+-signaling in single ASMC of lung slices was assessed using two-photon-microscopy.

Results: Airways from T-bet KO-mice showed increased baseline airway tone (BAT) and BHR compared to wild-type mice. This could be mimicked by incubation of lung slices from wild-type mice with IL-13. The increased BAT was correlated with an increased incidence of spontaneous changes in intracellular Ca2+-concentrations, whereas BHR correlated with higher ACH-induced Ca2+-transients and an increased proportion of ASMC showing Ca2+-oscillations. Emptying intracellular Ca2+-stores using caffeine or cyclopiazonic acid induced higher Ca2+-elevations in ASMC from T-bet KO- compared to wild-type mice.

Conclusion: Altered Ca2+-homeostasis of ASMC contributes to increased BAT and BHR in lung slices from T-bet KO-mice as a murine asthma model. We propose that a higher Ca2+-content of the intracellular Ca2+-stores is involved in the pathophysiology of these changes.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Calcium Signaling / physiology*
  • Cells, Cultured
  • Homeostasis / physiology
  • Lung / physiology*
  • Mice
  • Mice, Inbred BALB C
  • Mice, Knockout
  • Myocytes, Smooth Muscle / physiology*
  • T-Box Domain Proteins
  • Transcription Factors / deficiency*
  • Transcription Factors / genetics

Substances

  • T-Box Domain Proteins
  • T-box transcription factor TBX21
  • Transcription Factors