Background: Diabetes is an inflammatory condition associated with iron abnormalities and increased oxidative damage. We aimed to investigate how diabetes affects the interrelationships between these pathogenic mechanisms.
Methods: Glycaemic control, serum iron, proteins involved in iron homeostasis, global antioxidant capacity and levels of antioxidants and peroxidation products were measured in 39 type 1 and 67 type 2 diabetic patients and 100 control subjects.
Results: Although serum iron was lower in diabetes, serum ferritin was elevated in type 2 diabetes (p = 0.02). This increase was not related to inflammation (C-reactive protein) but inversely correlated with soluble transferrin receptors (r = - 0.38, p = 0.002). Haptoglobin was higher in both type 1 and type 2 diabetes (p < 0.001) and haemopexin was higher in type 2 diabetes (p < 0.001). The relation between C-reactive protein and haemopexin was lost in type 2 diabetes (r = 0.15, p = 0.27 vs r = 0.63, p < 0.001 in type 1 diabetes and r = 0.36, p = 0.001 in controls). Haemopexin levels were independently determined by triacylglycerol (R(2) = 0.43) and the diabetic state (R(2) = 0.13). Regarding oxidative stress status, lower antioxidant concentrations were found for retinol and uric acid in type 1 diabetes, alpha-tocopherol and ascorbate in type 2 diabetes and protein thiols in both types. These decreases were partially explained by metabolic-, inflammatory- and iron alterations. An additional independent effect of the diabetic state on the oxidative stress status could be identified (R(2) = 0.5-0.14).
Conclusions: Circulating proteins, body iron stores, inflammation, oxidative stress and their interrelationships are abnormal in patients with diabetes and differ between type 1 and type 2 diabetes.
Copyright (c) 2006 John Wiley & Sons, Ltd.