Ablation of myosin-binding protein-C accelerates force development in mouse myocardium

Biophys J. 2006 Jun 1;90(11):4119-27. doi: 10.1529/biophysj.105.078147. Epub 2006 Mar 2.

Abstract

Myosin-binding protein-C (MyBP-C) is a thick filament-associated protein that binds tightly to myosin. Given that cMyBP-C may act to modulate cooperative activation of the thin filament by constraining the availability of myosin cross-bridges for binding to actin, we investigated the role of MyBP-C in the regulation of cardiac muscle contraction. We assessed the Ca(2+) sensitivity of force (pCa(50)) and the activation dependence of the rate of force redevelopment (k(tr)) in skinned myocardium isolated from wild-type (WT) and cMyBP-C null (cMyBP-C(-/-)) mice. Mechanical measurements were performed at 22 degrees C in the absence and presence of a strong-binding, nonforce-generating analog of myosin subfragment-1 (NEM-S1). In the absence of NEM-S1, maximal force and k(tr) and the pCa(50) of isometric force did not differ between WT and cMyBP-C(-/-) myocardium; however, ablation of cMyBP-C-accelerated k(tr) at each submaximal force. Treatment of WT and cMyBP-C(-/-) myocardium with 3 muM NEM-S1 elicited similar increases in pCa(50,) but the effects of NEM-S1 to increase k(tr) at submaximal forces and thereby markedly reduce the activation dependence of k(tr) occurred to a greater degree in cMyBP-C(-/-) myocardium. Together, these results support the idea that cMyBP-C normally acts to constrain the interaction between myosin and actin, which in turn limits steady-state force development and the kinetics of cross-bridge interaction.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Actins / metabolism
  • Animals
  • Biomechanical Phenomena
  • Calcium / physiology*
  • Carrier Proteins / genetics
  • Carrier Proteins / metabolism
  • Carrier Proteins / physiology*
  • In Vitro Techniques
  • Mice
  • Mice, Knockout
  • Myocardial Contraction*
  • Myocardium / metabolism*
  • Myosin Subfragments / metabolism
  • Myosins / metabolism*
  • Protein Binding

Substances

  • Actins
  • Carrier Proteins
  • Myosin Subfragments
  • myosin-binding protein C
  • Myosins
  • Calcium