To validate the cat as a suitable model for positron emission tomography imaging (PET) and to gain further knowledge on the anatomical distribution of the serotonin-1A receptor (5-HT 1A) in the feline brain, we used PET with [18F]MPPF and in vitro autoradiography with [3H]MPPF, [3H]8-OH-DPAT and [3H]paroxetine. PET radioactivity curves with [18F]MPPF were very reproducible in anaesthetized cats, with the highest radioactivity uptakes recorded in the hippocampus, cingulate cortex, septum, infralimbic cortex and raphe nucleus, whereas the lowest were found in the cerebellum. [3H]8-OH-DPAT binding displayed a comparable, albeit lower, regional distribution than with [3H]MPPF. Autoradiography also revealed the presence of 5-HT 1A receptor binding sites in the cortex and in the interpeduncular nucleus, due to its greater sensitivity and spatial resolution compared with PET imaging. The cat constitutes an interesting experimental model for PET imaging, as many physiological concepts have been well established with this animal. Our study also shows the advantages of combining complementary neuroimaging techniques such as in vivo PET imaging and in vitro autoradiography to visualize the distribution of the 5-HT 1A receptors.