Safe and effective vaccination is important for rabies prevention in animals. Although several genetically engineered rabies vaccines have been developed, few have been licensed for use, principally due to biosafety concerns or due to poor efficacy in animal models. In this paper, we describe the construction and characterization of a replication-competent recombinant canine adenovirus type-2 expressing the rabies virus glycoprotein (SRV9 strain) by a different strategy from that reported previously, i.e., the recombinant genome carrying the glycoprotein cDNA was generated by a series of strictly gene cloning steps, infectious recombinant virus was obtained by transfecting the recombinant genome into a canine kidney cell line, MDCK. This recombinant virus, CAV-E3delta-CGS, was subcutaneously injected into dogs. All vaccinated dogs produced effective neutralizing antibodies after one inoculation and a stronger anamnestic immune response was produced after booster injection. The immunized dogs could survive the challenge of 60,000 mouse LD50 CVS-24, which is lethal to all unimmunized dogs and is comparable to the conventional vaccines. The immunity lasts for months with a protective level of neutralizing antibody. This recombinant virus would be an alternative to the attenuated and the inactivated rabies vaccines and be prospective in immunizing dogs against rabies.