The ability of Listeria monocytogenes to breach mucosal and endothelial barriers of the host during infection is a hallmark property mediated by the internalins (Inl) A and B. We examined the invasive property of several L. monocytogenes strains representing 13 serotypes. We found that invasiveness is a heterogeneous phenotype amongst L. monocytogenes serotype strains. Despite this, many of the poorly invasive and non-invasive strains of L. monocytogenes express internalins at levels comparable to those of invasive isolates. Introduction of the inlAB locus from EGD-e into several poorly invasive strains had no effect on their invasive properties. A strain from serotype 4b that exhibits highly invasive properties was further examined. Deletion of the inlAB locus abrogated invasion of this strain while reintroduction of the inlAB locus into this strain restored invasiveness. An analysis of regions flanking the inlAB locus revealed considerable differences in the strains studied. Our results suggest that efficacious entry of L. monocytogenes into eukaryotic cells is complex and requires additional factors apart from internalins. Data presented here also suggest that the inlAB locus was introduced into L. monocytogenes by horizontal gene transfer with subsequent deletion and rearrangements occurring during evolution of this species.