To gain insight into the poorly understood pathophysiology of the myelodysplastic syndromes (MDSs), we have determined the gene expression profiles of the CD34+ cells of 55 patients with MDS by using a comprehensive array platform. These profiles showed many similarities to reported interferon-gamma-induced gene expression in normal CD34+ cells; indeed the 2 most up-regulated genes, IFIT1 and IFITM1, are interferon-stimulated genes (ISGs). Alterations in the expression of ISGs may play a role in the hematologic features of MDS, such as peripheral blood cytopenias. Up-regulation of IFIT1 is a potential diagnostic marker for MDS. We determined whether distinct gene expression profiles were associated with specific FAB and cytogenetic groups. CD34+ cells from patients with refractory anemia with ringed sideroblasts (RARS) showed a particular gene expression profile characterized by up-regulation of mitochondrial-related genes and, in particular, of those of heme synthesis (eg, ALAS2). CD34+ cells from patients with the del(5q) had a distinct gene expression profile, characterized by down-regulation of genes assigned to 5q, and up-regulation of the histone HIST1 gene cluster at chromosome 6p21 and of genes related to the actin cytoskeleton. This study provides important and new insights into the pathophysiology of MDS.