BioHMM: a heterogeneous hidden Markov model for segmenting array CGH data

Bioinformatics. 2006 May 1;22(9):1144-6. doi: 10.1093/bioinformatics/btl089. Epub 2006 Mar 13.

Abstract

We have developed a new method (BioHMM) for segmenting array comparative genomic hybridization data into states with the same underlying copy number. By utilizing a heterogeneous hidden Markov model, BioHMM incorporates relevant biological factors (e.g. the distance between adjacent clones) in the segmentation process.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms*
  • Artificial Intelligence
  • Base Sequence
  • Chromosome Mapping / methods*
  • Gene Dosage / genetics*
  • In Situ Hybridization / methods*
  • Markov Chains
  • Models, Genetic
  • Models, Statistical
  • Molecular Sequence Data
  • Oligonucleotide Array Sequence Analysis / methods*
  • Pattern Recognition, Automated / methods
  • Sequence Analysis, DNA / methods*
  • Software*