Cytochrome P450 isozymes purified from rat hepatic microsomes were able to catalyse the oxidation of 11-oxo-delta 8-tetrahydrocannabinol (11-oxo-delta 8-THC) to delta 8-THC-11-oic acid in the presence of NADPH, cytochrome P450 reductase and dilauroylphosphatidylcholine. The catalytic activities (nmol/min/nmol P450) of cytochrome P450s, UT-2 (IIC11), UT-4 (IIA2), UT-5 (IIC13), PB-1, PB-2 (IIC6), PB-4 (IIB1), MC-1 (IA2), MC-5 (IA1) and IF-3 (IIA1), were 0.69, 0.08, 0.07, 0.23, 0.46, 0.02, 0.06, 0.07 and 0.34, respectively, whereas the activities of cytochrome P450s, PB-5 (IIB2) and DM (IIE1), were less than 0.02 nmol/min/nmol P450. Cytochrome P450 IIC11 showed the highest catalytic activity of the cytochromes examined. The mechanism for the oxidation of 11-oxo-delta 8-THC to delta 8-THC-11-oic acid by cytochrome P450 IIC11 was established as being an oxygenation since one atom of oxygen-18 was exclusively incorporated into the carboxylic acid formed under 18O2. The antibody raised to cytochrome P450 IIC11 inhibited by 60% the hepatic microsomal oxidation of 11-oxo-delta 8-THC to delta 8-THC-11-oic acid in male rats. These results indicate that cytochrome P450 IIC11 is a major form of the cytochrome to catalyse the oxidation of 11-oxo-delta 8-THC to delta 8-THC-11-oic acid in the hepatic microsomes of male rats and that the oxidation of aldehyde to carboxylic acid is a catalytic activity common to most isozymes of P450.