Besides being a useful tool in research, gene transfer has a high potential as treatment for a variety of genetic and acquired diseases. However, in order to enable a gene to become a pharmaceutical, efficient and safe methods of delivery have to be developed. We recently found that cationic amphipathic histidine-rich peptide antibiotics can efficiently deliver DNA into mammalian cells. Our lead compound, LAH4 (KKALLALALHHLAHLALHLALALKKA), demonstrated in vitro transfection efficiencies comparable to those of commercially available reagents. Synthesis and evaluation of LAH mutants provided evidence that the transfection efficiency depends on the number and positioning of histidine residues in the peptide as well as on the pH at which the in-plane to transmembrane transition takes place. Moreover, recent results suggest that binding of the DNA complexes to the plasma membrane is mediated by heparan sulfate proteoglycans and that anionic phospholipids may be involved in the endosomal destabilization process. Finally, we also describe in this review the rationale that led to the development of LAH4 as a DNA carrier as well as the biophysical methods that have allowed us to propose a model which could explain the way this peptide destabilizes the endosomal bilayer.