Broadly speaking, proteomics is concerned with the simultaneous characterization of the features (for example, the concentration or activity) of the many different proteins that are typically found in biological or clinical specimens. The field is being driven forward both by innovative biotechnology companies and by academicians who are introducing the technology required for the parallel identification of individual proteins. The technology currently relies heavily on two-dimensional gel electrophoresis combined with mass spectrometry, but protein microarray chips are rapidly becoming a reality. Protein biomarkers are increasingly being recognized as crucially important for the study of disease processes, both from diagnostic and prognostic points of view. Proteome level studies will therefore be used increasingly both to identify and follow the course of various pathological conditions. In the specialty of anesthesiology, this technology will allow an improved understanding of the mechanisms of action of many of the drugs that are routinely administered in the operating room and also the effects of these therapeutic drugs on protein expression. In addition, proteomic studies will increasingly be used for both diagnostic and prognostic purposes in the intensive care unit and the chronic pain clinic.