The regulatory mechanisms which control the wide array of cellular responses to transforming growth factor beta (TGF beta) are not understood. This report presents evidence that down-regulation of TGF beta receptors on human monocytes may be one mechanism by which the effects of TGF beta are regulated. Treatment of monocytes with interferon gamma (IFN gamma) and lipopolysaccharide for 18 h reduced monocyte receptor number (approximately 400/cell) in a dose-dependent fashion by 89 and 78%, respectively, as determined by 125I-TGF beta binding. Incubation with other cytokines (granulocyte-macrophage colony-stimulating factor, macrophage colony-stimulating factor-1, interleukin-1, tumor necrosis factor alpha) did not alter the amount of TGF beta bound. The decrease in 125I-TGF beta binding could not be attributed to competition for receptor sites by secreted TGF beta. Instead, the decline in binding was due to a loss of type I TGF beta receptors, the subtype primarily expressed by monocytes, with no decrease in receptor affinity. Lipopolysaccharide-induced receptor loss was rapid (1-4 h), in contrast to the prolonged (12 h) decline induced by IFN gamma. Loss of receptors was accompanied by a diminished ability of the cells to respond to TGF beta with an induction of TNF alpha mRNA. Thus, this monocyte system is the first example of a heterologous agent causing the down-regulation of TGF beta receptors with a concomitant decline in a TGF beta-stimulated function.