When expressed in Escherichia coli, the human beta 1- and beta 2-adrenergic receptors retain their ligand binding specificity. Their functional integrity was investigated by analyzing receptor-guanine nucleotide-binding regulatory (G) protein coupling by using two splice variants of the alpha subunit of the stimulatory G protein Gs synthesized in E. coli (rGs alpha-S and rGs alpha-L) and the beta gamma subunits of G protein purified from bovine brain. In competition binding experiments with (-)-[125I]iodocyanopindolol and (-)-isoproterenol, rGs alpha-S.beta gamma and rGs alpha-L.beta gamma reconstituted guanine nucleotide-sensitive high-affinity agonist binding with comparable affinities, whereas rGs alpha PT, a mutant of rGs alpha-L with an altered carboxyl terminus, and a recombinant subtype of the alpha subunit of the inhibitory G protein, rGi alpha-1, were approximately 20- and approximately 200-fold less potent, respectively. A comparison of the beta 1- and beta 2-adrenergic receptor expressed in E. coli with the beta 2-receptor in S49 murine lymphoma cyc- cell membranes revealed a similar affinity of rGs alpha-S and rGs alpha-L for the recombinant and native receptors. After stable incorporation of rGs alpha-S.beta gamma into E. coli membranes, receptor-G protein coupling was also verified by determining the isoproterenol-mediated acceleration of the rate for guanine 5'-[gamma-[35S]thio]triphosphate binding. These results show that (i) receptor-G protein coupling can be reconstituted in E. coli using recombinant components and that (ii) such an approach may be more generally used to evaluate coupling preferences between defined molecular species of receptors and G-protein subunits.