The involvement of glycinergic neurotransmission in the central regulation of respiration was investigated by administration of specific receptor agonists and antagonists into the 4th cerebral ventricle of the rabbit. Central respiratory activity was assessed by cycle-triggered averaging of phrenic nerve activity (PNA). Glycine reduced the peak amplitude of PNA and increased the duration of the respiratory phases. Conversely, strychnine decreased the duration of both phases, being more effective in expiration. Strychnine converted inspiratory ramp activity to a decrescendo type of pattern, with the highest discharge activity present at the onset of the inspiratory phase. Strychnine induced tonic PNA lasting throughout expiration with a decrescendo type of activity. In many cases strychnine induce apneusis with tonic PNA being at a level of about 2/3 of its maximum value during control. We conclude that glycinergic neurotransmission is important for the maintenance of the respiratory rhythm as well as the generation of normal respiratory pattern. Glycine could be involved in phasic as well as tonic inhibitory neurotransmission within the central respiratory system.