Shapeme histogram projection and matching for partial object recognition

IEEE Trans Pattern Anal Mach Intell. 2006 Apr;28(4):568-77. doi: 10.1109/TPAMI.2006.83.

Abstract

Histograms of shape signature or prototypical shapes, called shapemes, have been used effectively in previous work for 2D/3D shape matching and recognition. We extend the idea of shapeme histogram to recognize partially observed query objects from a database of complete model objects. We propose representing each model object as a collection of shapeme histograms and match the query histogram to this representation in two steps: 1) compute a constrained projection of the query histogram onto the subspace spanned by all the shapeme histograms of the model and 2) compute a match measure between the query histogram and the projection. The first step is formulated as a constrained optimization problem that is solved by a sampling algorithm. The second step is formulated under a Bayesian framework, where an implicit feature selection process is conducted to improve the discrimination capability of shapeme histograms. Results of matching partially viewed range objects with a 243 model database demonstrate better performance than the original shapeme histogram matching algorithm and other approaches.

Publication types

  • Evaluation Study

MeSH terms

  • Algorithms*
  • Artificial Intelligence*
  • Computer Simulation
  • Image Enhancement / methods*
  • Image Interpretation, Computer-Assisted / methods*
  • Imaging, Three-Dimensional / methods*
  • Information Storage and Retrieval / methods
  • Models, Biological*
  • Models, Statistical
  • Pattern Recognition, Automated / methods*
  • Reproducibility of Results
  • Sensitivity and Specificity