The major histocompatibility complex (MHC) plays an essential role in the adaptive immune system of vertebrates through antigen recognition. Although MHC genes are found in all vertebrates, the MHC region is dynamic and has changed throughout vertebrate evolution, making it an important tool for comparative genomics. Marsupials occupy an important position in mammalian phylogeny, yet the MHC of few marsupials has been studied in detail. We report the isolation and analysis of expressed MHC Class I genes from the tammar wallaby, a model marsupial used extensively for the study of mammalian reproduction, genetics, and immunology. We determined that there are at least 11 Class I loci in the tammar genome and isolated six expressed Class I sequences from spleen and testes cDNA libraries, representing at least four loci. Two of the Class I sequences contain substitutions at sites known to be important for antigen binding, perhaps impacting their ability to bind peptides, or the types of peptide to which they bind. Phylogenetic analysis of tammar wallaby Class I sequences and other mammalian Class I sequences suggests that some tammar wallaby and red-necked wallaby loci evolved from common ancestral genes.