The nuclear matrix protein Msx2-interacting nuclear target protein (MINT) is a transcription factor that regulates the expression of key transcriptional effectors in diverse signaling pathways. To further understand the function and mechanism of the MINT-mediated transcription regulation, the yeast two-hybrid system was employed to screen proteins that interact with the C-terminal fragment of MINT. From a cDNA library of human lymph nodes, a cDNA encoding the ubiquitin-conjugating enzyme UbcH8 was identified. Using different truncated versions of MINT, we show that the C-terminal Spen paralog and ortholog C-terminal domain (SPOC) domain, which has been demonstrated to mediate interactions between MINT and a panel of other molecules, might be responsible for interaction between MINT and UbcH8 in yeast, as confirmed by the beta-galactosidase assay. The interaction between MINT and UbcH8 in mammalian cells was further proved by a series of biochemical assays including the mammalian two-hybrid assay, GST pull-down assay, and co-immunoprecipitation assay. Using a reporter system, we found that MINT-mediated transcription suppression was sensitive to MG132, an inhibitor of the proteosome system. These results suggest a novel mechanism of MINT-mediated transcription regulation, and might be helpful for understanding functions of MINT.