Ranked prediction of p53 targets using hidden variable dynamic modeling

Genome Biol. 2006;7(3):R25. doi: 10.1186/gb-2006-7-3-r25. Epub 2006 Mar 31.

Abstract

Full exploitation of microarray data requires hidden information that cannot be extracted using current analysis methodologies. We present a new approach, hidden variable dynamic modeling (HVDM), which derives the hidden profile of a transcription factor from time series microarray data, and generates a ranked list of predicted targets. We applied HVDM to the p53 network, validating predictions experimentally using small interfering RNA. HVDM can be applied in many systems biology contexts to predict regulation of gene activity quantitatively.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Line, Tumor
  • Gamma Rays
  • Gene Expression Profiling
  • Genes, p53*
  • Genetic Variation
  • Humans
  • Models, Genetic*
  • Models, Theoretical
  • Oligonucleotide Array Sequence Analysis
  • Precursor Cell Lymphoblastic Leukemia-Lymphoma / genetics
  • RNA Interference
  • Transcription Factors / genetics
  • Transcription Factors / metabolism
  • Transcription, Genetic*
  • Tumor Suppressor Protein p53 / genetics

Substances

  • Transcription Factors
  • Tumor Suppressor Protein p53