Hormones such as insulin, growth factors, and cell stress stimulate system A amino acid transporter. Transforming growth factor-beta (TGF-beta) stimulates amino acid uptake thereby inducing cell proliferation, cellular hypertrophy, and matrix synthesis. Insulin appears to activate amino acid in smooth muscle cells via a phosphatidylinositol 3-kinase (PI3-kinase)-dependent pathway. We examine the effect and interaction of TGF-beta, insulin, and PI3-kinase activity on amino acid uptake in human lung myofibroblasts. TGF-beta treatment induced large increases in system A activity and a small delayed increase in the phosphorylation of protein kinase B, also termed phospho-Akt. In contrast, insulin induced small increases in system A activity and large increases in phospho-Akt levels. LY294002, a PI3-kinase inhibitor, blocked the TGF-beta-induced amino acid uptake only partially, but completely blocked TGF-beta-induced Akt phosphorylation. Moreover, the level of phospho-Smad3 was found to be high even when LY294002 blocked TGF-beta-induced phospho-Akt levels. Inhibition of PI3-kinase activity resulted in increase in Km, consistent with a major change in transporter activity without change in transporter number. The PI3-kinase inhibitor also did not change the amino acid transporter 2 (ATA2) mRNA levels. Taken together, these results suggest that TGF-beta induced Smad-3 and amino acid uptake through a PI3-kinase independent pathway.