Characterisation of ionisation chambers for a mixed radiation field and investigation of their suitability as radiation monitors for the LHC

Radiat Prot Dosimetry. 2005;116(1-4 Pt 2):170-4. doi: 10.1093/rpd/nci097.

Abstract

Monitoring of the radiation environment is one of the key tasks in operating a high-energy accelerator such as the Large Hadron Collider (LHC). The radiation fields consist of neutrons, charged hadrons as well as photons and electrons with energy spectra extending from those of thermal neutrons up to several hundreds of GeV. The requirements for measuring the dose equivalent in such a field are different from standard uses and it is thus necessary to investigate the response of monitoring devices thoroughly before the implementation of a monitoring system can be conducted. For the LHC, it is currently foreseen to install argon- and hydrogen-filled high-pressure ionisation chambers as radiation monitors of mixed fields. So far their response to these fields was poorly understood and, therefore, further investigation was necessary to prove that they can serve their function well enough. In this study, ionisation chambers of type IG5 (Centronic Ltd) were characterised by simulating their response functions by means of detailed FLUKA calculations as well as by calibration measurements for photons and neutrons at fixed energies. The latter results were used to obtain a better understanding and validation of the FLUKA simulations. Tests were also conducted at the CERF facility at CERN in order to compare the results with simulations of the response in a mixed radiation field. It is demonstrated that these detectors can be characterised sufficiently enough to serve their function as radiation monitors for the LHC.

Publication types

  • Evaluation Study

MeSH terms

  • Computer-Aided Design*
  • Equipment Design
  • Equipment Failure Analysis
  • Monte Carlo Method
  • Particle Accelerators / instrumentation*
  • Radiation Dosage
  • Radiation Monitoring / instrumentation*
  • Radiation Monitoring / methods
  • Radiation Protection / instrumentation*
  • Radiation Protection / methods
  • Reproducibility of Results
  • Scattering, Radiation
  • Sensitivity and Specificity