Simulation and measurements of the response of an air ionisation chamber exposed to a mixed high-energy radiation field

Radiat Prot Dosimetry. 2005;116(1-4 Pt 2):380-6. doi: 10.1093/rpd/nci088.

Abstract

CERN's radiation protection group operates a network of simple and robust ionisation chambers that are installed inside CERN's accelerator tunnels. These ionisation chambers are used for the remote reading of ambient dose rate equivalents inside the machines during beam-off periods. This Radiation Protection Monitor for dose rates due to Induced Radioactivity ('PMI', trade name: PTW, Type 34031) is a non-confined air ionisation plastic chamber which is operated under atmospheric pressure. Besides its current field of operation it is planned to extend the use of this detector in the Large Hadron Collider to measure radiation under beam operation conditions to obtain an indication of the machine performance. Until now, studies of the PMI detector have been limited to the response to photons. In order to evaluate its response to other radiation components, this chamber type was tested at CERF, the high-energy reference field facility at CERN. Six PMI detectors were installed around a copper target being irradiated by a mixed hadron beam with a momentum of 120 GeV c(-1). Each of the chosen detector positions was defined by a different radiation field, varying in type and energy of the incident particles. For all positions, detailed measurements and FLUKA simulations of the detector response were performed. This paper presents the promising comparison between the measurements and simulations and analyses the influence of the different particle types on the resulting detector response.

Publication types

  • Comparative Study

MeSH terms

  • Air
  • Computer Simulation
  • Computer-Aided Design*
  • Equipment Design
  • Equipment Failure Analysis
  • Models, Statistical*
  • Monte Carlo Method
  • Radiation Dosage
  • Radiation Monitoring / instrumentation*
  • Radiation Monitoring / methods
  • Radiation Protection / instrumentation*
  • Radiation Protection / methods
  • Reproducibility of Results
  • Sensitivity and Specificity
  • Switzerland