The identification of most or all of the genetic functions that are required for a particular biological process could be achieved through phenotypic studies of high genome-coverage mutant collections. Technologies for creating such collections, in the form of mixed populations or individually arrayed sequence-defined mutants, are now available for numerous bacterial species. The analysis of mixed mutant collections using microarray-based detection procedures appears to be particularly effective in identifying functions required for complex processes such as virulence. The phenotypic analysis of sequence-defined mutant libraries provides a virtually complete identification of nonessential genes required for processes for which suitable screens can be devised. Such libraries also serve as a source of individual mutants for examining the biological relevance of gene associations revealed by transcriptional profiling or homology.