Skeletal muscle contraction depends on the release of Ca(2+) from the sarcoplasmic reticulum (SR), but the dynamics of the SR free Ca(2+) concentration ([Ca(2+)](SR)), its modulation by physiological stimuli such as catecholamines, and the concomitant changes in cAMP handling have never been directly determined. We used two-photon microscopy imaging of GFP-based probes expressed in mouse skeletal muscles to monitor, for the first time in a live animal, the dynamics of [Ca(2+)](SR) and cAMP. Our data, which were obtained in highly physiological conditions, suggest that free [Ca(2+)](SR) decreases by approximately 50 microM during single twitches elicited through nerve stimulation. We also demonstrate that cAMP levels rise upon beta-adrenergic stimulation, leading to an increased efficacy of the Ca(2+) release/reuptake cycle during motor nerve stimulation.