In the present study, using in vivo brain microdialysis, we investigated the basal extracellular dopamine (DA) and serotonin (5-HT) release in the caudal striatum (cSTR) of young (4-6 months old) and aged (10-12 months old) zitter mutant rats. The basal extracellular levels of DA release in both young and aged zitter rats were significantly lower than that of age-matched Sprague-Dawley (SD) rats, whereas only aged zitter rats showed a significant difference in the basal 5-HT release. Dopaminergic neurons were more vulnerable than serotonergic neurons in the cSTR of zitter mutant rats during aging. Perfusion of 60 mM potassium (K+) enhanced the extracellular levels of cSTR DA in the young zitter rats and the extracellular levels of both DA and 5-HT in the cSTR of the aged zitter rats. The firing rate of K+-stimulated monoamine release in the cSTR was significantly higher in the zitter rats than in the age-matched SD rats. These findings suggest that there are innate quantitative differences in the releasable pool and the availability of monoamines in the cSTR of zitter mutant rats.