In rainbow trout, there are at least two CYP19 genes (CYP19a and CYP19b). They encode distinct P450arom isozymes that are differentially expressed in the ovary and brain. To understand the transcriptional regulation of the rainbow trout CYP19a (rtCYP19a) gene in the ovary, we isolated its 5'-flanking region. The presence of potential FTZ-F1-binding sites prompted us to isolate the cDNA encoding a rainbow trout FTZ-F1 homologue (rtFTZ-F1) and analyze its effect on the rtCYP19a gene transcriptional activity. RT-PCR analysis showed overlapping expression of the rtCYP19a and rtFTZ-F1 genes in the ovary. Transient transfection studies in Chinese hamster ovary-derived CHO-K1 cells revealed that the region from -247 to -105, which contains three potential FTZ-F1-binding sites, was required for rtFTZ-F1-mediated transcriptional activation of the rtCYP19a gene. Among the three potential binding sites, the two from -150 to -142 and from -118 to -110 showed strong affinities for rtFTZ-F1 in gel shift assays, and base substitutions in either site almost abolished the transcriptional activation by rtFTZ-F1. Taken together, these results demonstrate that rtFTZ-F1 plays an important role in the transcriptional regulation of the rtCYP19a gene in the ovary.