This study demonstrated species differences in IGF-1 and IGF-2 receptor binding and localization in the hippocampus of the rat and mouse. Competition binding studies indicated that there were no differences in the relative binding affinities for the type 1 or type 2 receptors between the brains of these animals. These results suggested that the observed species differences were not attributable to alterations in IGF receptor kinetics. Receptor autoradiographic analyses demonstrated that IGF-1 binding differed in both the localization and overall receptor densities observed, with the rat demonstrating more specific localization and greater receptor density in the hippocampus than the mouse. The rat also exhibited a greater density of IGF-2 receptors in the hippocampus than the mouse. Despite differences in IGF receptor populations, both species exhibit similar hippocampal structure and lamination. Therefore, these results demonstrate a disparity in the localization of IGF receptor binding in the rat and mouse, suggesting that IGFs in these species are differentially regulated, with distinct neuromodulatory, neurotrophic, and/or developmental roles in this region of the brain. Previous comparative anatomical studies of the hippocampal formation of rats and mice fail to offer an explanation for the absence or reduction of binding of IGF-1 in the mouse. Although the mouse has a greater cell density in the s. granulosum than the rat, and both species exhibit similar glia and synaptic contact densities in the s. moleculare of the dentate gyrus, the mouse exhibits a complete absence of IGF-1 binding in this region. The lack of anatomical differences in the hippocampal formation of these species suggests that the patterns observed in IGF binding result from alterations in either neurochemical modulation of these neurons or specific neurotrophic requirements of the cells in this region. Differences have been reported on the concentrations and binding of various neurotransmitters in the hippocampus of these species, however these differences do not easily account for the variations observed in IGF binding in this study. IGFs are known to influence acetylcholine neurotransmission in the hippocampus as well as other brain areas in the rat. Recently, a truncated form of IGF-1, in which a tripeptide is cleaved from the N-terminus of the peptide, has been reported in brain. The cleaved tripeptide has been shown to activate glutamate receptors, which may dramatically influence excitatory neurotransmission in this region. Therefore, in addition to the possible neurotrophic actions of the peptide itself, subsequent processing of IGF-1 may be an important aspect of IGF-1 activity in the brain.(ABSTRACT TRUNCATED AT 400 WORDS)