The development of automated systems for data acquisition in cryo electron microscopy has enabled the possibility of acquiring very large number of images from a single specimen grid. We have demonstrated that over images of 250,000 single particles can be acquired in a 24 h period. This has raised questions as to whether contamination buildup on the specimen limits the quality of the data that can be acquired during these long duration experiments and also whether the data acquisition session could be extended to allow acquisition of more than 1,000,000 particles. We report here a systematic characterization of contamination of specimens maintained for long periods of time at liquid nitrogen temperatures using standard side entry cryo stages. As part of this characterization we developed a more reliable method for accurately estimating specimen ice thickness. Using the method, we were able to calibrate image contrast against ice thickness under a variety of magnifications, objective aperture positions, and defoci, and demonstrated the strong dependence of the calibration curve on these parameters. The results show the anti-contamination aperture is, as expected, critical to the prevention of contamination and that loading film into the microscope dramatically increases the contamination rate, particularly in the first 3 h after the insertion of the film box. In the absence of film, we were able to reproducibly demonstrate that the contamination rate can be limited to a rate of approximately 1 angstrom/h providing reassurance that contamination will not be a major limiting factor for long term cryoEM experiments if a CCD camera is used for the imaging.