Neuropeptide Y (NPY) is thought to have a major role in the physiological control of energy homeostasis. Among five NPY receptors described, the NPY Y5 receptor (Y5R) is a prime candidate to mediate some of the effects of NPY on energy homeostasis, although its role in physiologically relevant rodent obesity models remains poorly defined. We examined the effect of a potent and highly selective Y5R antagonist in rodent obesity and dietary models. The Y5R antagonist selectively ameliorated diet-induced obesity (DIO) in rodents by suppressing body weight gain and adiposity while improving the DIO-associated hyperinsulinemia. The compound did not affect the body weight of lean mice fed a regular diet or genetically obese leptin receptor-deficient mice or rats, despite similarly high brain Y5R receptor occupancy. The Y5R antagonist acts in a mechanism-based manner, as the compound did not affect DIO of Y5R-deficient mice. These results indicate that Y5R is involved in the regulation and development of DIO and suggest utility for Y5R antagonists in the treatment of obesity.