Objective: An important mechanism contributing to cartilage destruction in arthritis is chondrocyte desensitization toward its main anabolic factor, insulin-like growth factor 1 (IGF-1). In this study, we sought to determine the role of suppressor of cytokine signaling 3 (SOCS-3) in the induction of IGF-1 desensitization of murine chondrocytes.
Methods: Chondrocyte responsiveness to IGF-1 was assessed by 35S-sulfate incorporation into proteoglycans (PGs), via aggrecan messenger RNA expression, using quantitative real-time polymerase chain reaction or insulin receptor substrate 1 (IRS-1) tyrosine phosphorylation (Western blot analysis). IGF-1 desensitization of patellar chondrocytes was studied in zymosan-induced arthritis. IGF-1 desensitization was induced in patellar cartilage explants or the H4 chondrocyte cell line, exposed to interleukin-1alpha (IL-1alpha). SOCS-3 protein expression was assessed by immunohistochemistry or by Western blot analysis of protein extracts. The role of SOCS-3 in IGF-1 signaling was elucidated by adenoviral overexpression.
Results: Exposure of murine articular cartilage to IL-1 caused a significant decrease in IGF-1-induced PG synthesis. This effect also occurred in inducible nitric oxide synthase-knockout mice, revealing the involvement of a secondary IL-1-induced factor other than nitric oxide. We showed that IL-1 significantly up-regulated SOCS-3 transcription and protein synthesis in H4 chondrocytes. In contrast, IL-18 was unable to induce SOCS-3 expression and failed to induce chondrocyte IGF-1 desensitization. Histologic analysis of samples from arthritic knee joints revealed high expression of SOCS-3 in chondrocytes. Through adenoviral overexpression of SOCS-3, we obtained direct evidence that SOCS-3 inhibits IGF-1-mediated cell signaling, since IRS-1 phosphorylation was reduced.
Conclusion: This study demonstrates that IL-1-induced SOCS-3 expression is a novel mechanism of IGF-1 desensitization in chondrocytes; in conjunction with nitric oxide it can contribute to cartilage damage during arthritis.