Over the past dozen years, the use of MRI techniques to map brain function (fMRI) has sparked a great deal of research. The ability of fMRI to image several different physiological processes concurrently (i.e., blood oxygenation, blood flow, metabolism) and noninvasively over large volumes make it the ideal choice for many different areas of neuroscience research in addition to countless applications in clinical settings. Furthermore, with the advent of high magnetic fields (and other hardware advancements, i.e., parallel imaging) for both human and animal research, spatial and temporal resolutions continue to be pushed to higher levels because of increases in the sensitivity as well as specificity of MR-detectable functional signals. fMRI methodology continues to grow and has the ability to cater to many different research applications. There seems to be no foreseeable end in sight to the advancement of fMRI techniques and its subsequent use in basic research as well as in clinical settings. In this work, fMRI techniques and the ongoing development of existing techniques are discussed with implications for the future of fMRI.
Copyright 2006 Wiley-Liss, Inc.