Hair cells of the inner ear are endowed with different types of ionic channels. To characterize voltage- and ion-dependent channels in vestibular hair cells, experiments were performed in enzymatically isolated hair cells of frog semicircular canals by using the whole-cell configuration of the patch-clamp technique. A large outward current, identified as a K+ current, was recorded when 132 mM KCl were present in the pipette filling solution. It could be dissected pharmacologically into three different components. The first component, which was transient and selectively blocked by 10 mM external 4AP, is most likely an IA-type current. The second one, sensitive to 20 mM external TEA, might be a delayed rectifier K+ current, while the third component insensitive to TEA and showing faster activation time course has been interpreted as a K+ current of IKCa-type. After blocking the outward current by substituting Cs+ for K+ and adding 20 mM TEA to the internal solution, a sustained inward current, identified as a Ca++ current, could be recorded. This current did not inactivate, and was blocked by Cd++ more effectively than Ni++, thus suggesting the presence of Ca++ channels similar to the neuronal "L" channels. Since both K+ and Ca++ channels were recruited at potentials near the resting level, it is suggested that they are involved in the modulation of the resting as well as the evoked transmitter release from the basal pole of the hair cells.