Soluble and thylakoid membrane proteins of jasmonic acid (JA)-treated and salt-stressed barley (Hordeum vulgare L.) seedlings were investigated using 15% sodium dodecyl sulfate-polyacrylamide slab gel electrophoresis. High JA concentrations induced marked quantitative and qualitative changes in polypeptide profiles concerning mainly the proteins with approximately equal mobility, as in NaCl-stressed plants. The most obvious increase in thylakoid polypeptide band intensity was at 55 to 57 kilodaltons (kD). The relative share of some polypeptides with apparent molecular masses above 66 kD and of polypeptides with lower molecular masses in the region of 20.5 to 15 kD was enhanced. At the same time, one new band at 31 to 31.5 kD was well expressed at 25 and 250 micromolar JA concentrations and became discernible in the 100 micromolar NaCl-treated plants. The intensity of some polypeptides of soluble proteins (molecular masses of 60, 47, 37, 30, and 23.4 kD) increased with increasing JA concentration, whereas the intensities of other polypeptide bands (55, 21.4, and 15 kD) decreased. Enhanced levels of 60-, 47-, 34-, and 30-kD polypeptides and reduced levels of 55- and 15-kD polypeptides were present in NaCl-treated plants. The appearance of one new polypeptide, of 25.1 kD, was observed only in NaCl-treated plants. At 100 millimolar NaCl, an eightfold increase in proline content was observed while at 250 micromolar JA, the proline content was threefold over the control. It is hypothesized that exogenously applied jasmonates act as stress agents. As such, they provoke alterations in the proline content and they can modulate typical stress responses by induction of stress proteins.