Low-dose hyper-radiosensitivity is not caused by a failure to recognize DNA double-strand breaks

Radiat Res. 2006 May;165(5):516-24. doi: 10.1667/RR3553.1.

Abstract

One of the earliest cellular responses to radiation-induced DNA damage is the phosphorylation of the histone variant H2AX (gamma-H2AX). gamma-H2AX facilitates the local concentration and focus formation of numerous repair-related proteins within the vicinity of DNA DSBs. Previously, we have shown that low-dose hyper-radiosensitivity (HRS), the excessive sensitivity of mammalian cells to very low doses of ionizing radiation, is a response specific to G(2)-phase cells and is attributed to evasion of an ATM-dependent G(2)-phase cell cycle checkpoint. To further define the mechanism of low-dose hyper-radiosensitivity, we investigated the relationship between the recognition of radiation-induced DNA double-strand breaks as defined by gamma-H2AX staining and the incidence of HRS in three pairs of isogenic cell lines with known differences in radiosensitivity and DNA repair functionality (disparate RAS, ATM or DNA-PKcs status). Marked differences between the six cell lines in cell survival were observed after high-dose exposures (>1 Gy) reflective of the DNA repair capabilities of the individual six cell lines. In contrast, the absence of functional ATM or DNA-PK activity did not affect cell survival outcome below 0.2 Gy, supporting the concept that HRS is a measure of radiation sensitivity in the absence of fully functional repair. No relationship was evident between the initial numbers of DNA DSBs scored immediately after either low- or high-dose radiation exposure with cell survival for any of the cell lines, indicating that the prevalence of HRS is not related to recognition of DNA DSBs. However, residual DNA DSB damage as indicated by the persistence of gamma-H2AX foci 4 h after exposure was significantly correlated with cell survival after exposure to 2 Gy. This observation suggests that the persistence of gamma-H2AX foci could be adopted as a surrogate assay of cellular radiosensitivity to predict clinical radiation responsiveness.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Cell Line
  • Cell Survival / radiation effects*
  • DNA / radiation effects*
  • DNA Damage*
  • Dose-Response Relationship, Radiation
  • Fibroblasts / cytology
  • Fibroblasts / physiology*
  • Fibroblasts / radiation effects*
  • Glioma / pathology
  • Glioma / physiopathology*
  • Histones / genetics
  • Histones / metabolism*
  • Humans
  • Mice
  • Radiation Dosage
  • Radiation Tolerance / physiology

Substances

  • H2AX protein, human
  • Histones
  • DNA