Background: Dendritic cells are the most powerful of the antigen-presenting cells and are known to play important roles in sensitization and inflammation in allergen-specific asthma. Various cytokines and chemokines are involved in the maturation and activation of dendritic cells. Among them is CC chemokine ligand (CCL)21, a key chemokine in the entry of naive T cells and antigen-stimulated dendritic cells into the T-cell zones of secondary lymphoid organs, which is a critical process in antigen-specific T-cell activation.
Objective: We studied the role of CCL21 in airway inflammation in asthma by using BALB/c-plt/plt (plt) mice, which possess genetic defects in expression of both CCL21 and CCL19.
Methods: Plt and control BALB/c mice were immunized with ovalbumin and alum 4 times and thereafter were subjected to a 2-week regimen of ovalbumin inhalation.
Results: In plt mice, ovalbumin-specific IgE response was delayed compared with control BALB/c mice, but they had the same level of response after final immunization. Although airway inflammation and response to acetylcholine were significantly reduced compared with BALB/c mice, significant eosinophilic inflammation and hyperresponsiveness were also observed in plt mice after 2 weeks of inhalation. Four weeks after cessation of inhalation, airway inflammation and hyperresponsiveness in plt mice were greater than in BALB/c mice. At the time of resolution of airway inflammation, IL-10 production was enhanced in BALB/c mice but not in plt mice.
Conclusion: The chemokines CCL21 and CCL19 were critical for resolution of airway inflammation.
Clinical implications: The findings about the chemokines for induction and resolution of inflammation are key to establishing a new strategy for asthma immunotherapy.