Near infrared reflectance spectroscopy (NIRS) was used to predict the nutritional value of dog foods sold in Chile. Fifty-nine dry foods for adult and growing dogs were collected, ground and scanned across the visible/NIR range and subsequently analysed for dry matter (DM), crude protein (CP), crude fibre (CF), total fat, linoleic acid, gross energy (GE), estimated metabolizable energy (ME) and several amino acids and minerals. Calibration equations were developed by modified partial least squares regression, and tested by cross-validation. Standard error of cross validation (SE(CV)) and coefficient of determination of cross validation (SE(CV)) were used to select best equations. Equations with good predicting accuracy were obtained for DM, CF, CP, GE and fat. Corresponding values for and SE(CV) were 0.96 and 1.7 g/kg, 0.91 and 3.1 g/kg, 0.99 and 5.0 g/kg, 0.93 and 0.26 MJ/kg, 0.89 and 12.4 g/kg. Several amino acids were also well predicted, such as arginine, leucine, isoleucine, phenylalanine-tyrosine (combined), threonine and valine, with values for and SE(CV) (g/kg) of 0.89 and 0.9, 0.94 and 1.3, 0.91 and 0.5, 0.95 and 0.9, 0.91 and 0.5, 0.93 and 0.5. Intermediate values, appropriate for ranking purposes, were obtained for ME, histidine, lysine and methionine-cysteine. Tryptophan, minerals or linoleic acid were not acceptably predicted, irrespective of the mathematical treatment applied. It is concluded that NIR can be successfully used to predict important nutritional characteristics of commercial dog foods.