The effect of pH and temperature on the apparent association equilibrium constant (Ka) for the binding of the recombinant proteinase inhibitor eglin c (eglin c), of the soybean Bowman-Birk proteinase inhibitor (BBI) and of its chymotrypsin and trypsin inhibiting fragments (F-C and F-T, respectively) to Leu-proteinase, the leucine specific serine proteinase from spinach (Spinacia oleracea L.) leaves, has been investigated. On lowering the pH from 9.5 to 4.5, values of Ka (at 21 degrees C) for complex formation decrease thus reflecting the acidic pK-shift of the hystidyl catalytic residue from approximately 6.9, in the free Leu-proteinase, to approximately 5.1, in the enzyme: inhibitor adducts. At pH 8.0, values of the apparent thermodynamic parameters for the proteinase:inhibitor complex formation are: Leu-proteinase:eglin c-Ka = 2.2 x 10(11) M-1, delta G degree = -64 kJ/mol, delta H degree = +5.9 kJ/mol, and delta S degree = +240 kJ/molK; Leu-proteinase:BBI-Ka = 3.2 x 10(10) M-1, delta G degree = -59 kJ/mol, delta H degree = +8.8 kJ/mol, and delta S degree = +230 J/molK; and Leu-proteinase:F-C-Ka = 1.1 x 10(6) M-1, delta G degree = -34 kJ/mol, delta H degree = +18 J/mol, and delta S degree = +180 J/molK (values of Ka, delta G degree and delta S degree were obtained at 21.0 degrees C; values of delta H degree were temperature-independent over the range explored, i.e. between 10.0 degrees C and 40.0 degrees C).(ABSTRACT TRUNCATED AT 250 WORDS)